Trigonometric Equations Question 47

Question: The shadow of a tower is found to be 60 metre shorter when the sun?s altitude changes from $ 30^{o} $ to $ 60^{o} $ . The height of the tower from the ground is approximately equal to

[Kerala (Engg.) 2005]

Options:

A) 62m

B) 301m

C) 101m

D) 75m

Show Answer

Answer:

Correct Answer: E

Solution:

  • $ \tan 30^{o}=\frac{h}{x+60} $ , $ \frac{1}{\sqrt{3}}=\frac{h}{x+60} $ $ x+60=\sqrt{3}h $ , $ x=\sqrt{3}h-60 $ $ \tan 60^{o}=\frac{h}{x} $ , $ x=\frac{h}{\sqrt{3}} $
    Þ $ \sqrt{3}h-60=\frac{h}{\sqrt{3}} $ Þ $ 3h-60\sqrt{3}=h $
    Þ $ h=\frac{60\sqrt{3}}{2}=30\sqrt{3} $ $ =51.96\approx 52m $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें