Trigonometric Equations Question 47
Question: The shadow of a tower is found to be 60 metre shorter when the sun?s altitude changes from $ 30^{o} $ to $ 60^{o} $ . The height of the tower from the ground is approximately equal to
[Kerala (Engg.) 2005]
Options:
A) 62m
B) 301m
C) 101m
D) 75m
Show Answer
Answer:
Correct Answer: E
Solution:
- $ \tan 30^{o}=\frac{h}{x+60} $ ,  $ \frac{1}{\sqrt{3}}=\frac{h}{x+60} $   $ x+60=\sqrt{3}h $ ,  $ x=\sqrt{3}h-60 $   $ \tan 60^{o}=\frac{h}{x} $ ,  $ x=\frac{h}{\sqrt{3}} $
 Þ $ \sqrt{3}h-60=\frac{h}{\sqrt{3}} $ Þ $ 3h-60\sqrt{3}=h $
 Þ $ h=\frac{60\sqrt{3}}{2}=30\sqrt{3} $ $ =51.96\approx 52m $ .
 BETA
  BETA 
             
             
           
           
           
          