Trigonometric Equations Question 50

Question: If $ 2{{\sin }^{2}}\theta =3\cos \theta , $ where $ 0\le \theta \le 2\pi $ , then $ \theta = $

[IIT 1963]

Options:

A) $ \frac{\pi }{6},\frac{7\pi }{6} $

B) $ \frac{\pi }{3},\frac{5\pi }{3} $

C) $ \frac{\pi }{3},\frac{7\pi }{3} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ 2-2{{\cos }^{2}}\theta =3\cos \theta $
    Þ $ 2{{\cos }^{2}}+3\cos \theta -2=0 $
    Þ $ \cos \theta =\frac{-3\pm \sqrt{9+16}}{4}=\frac{-3\pm 5}{4} $ Neglecting (-) sign, we get $ \cos \theta =\frac{1}{2}=\cos ( \frac{\pi }{3} ) $
    $ \Rightarrow $ $ \theta =2n\pi \pm \frac{\pi }{3} $ . The values of $ \theta $ between 0 and $ 2\pi $ are $ \frac{\pi }{3},\frac{5\pi }{3} $ .