Trigonometric Equations Question 53

Question: If $ a^{2},b^{2},c^{2} $ are in A. P. then which of the following are also in A.P.

[ISM Dhandbad 1989]

Options:

A) $ \sin A,\sin B,\sin C $

B) $ \tan A,\tan B,\tan C $

C) $ \cot A,\cot B,\cot C $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ {{\sin }^{2}}B-{{\sin }^{2}}A={{\sin }^{2}}C-{{\sin }^{2}}B $  \  $ \sin (B+A)\sin (B-A)=\sin (C+B)\sin (C-B) $  or  $ \sin C(\sin B\cos A-\cos B\sin A) $        $ =\sin A(\sin C\cos B-\cos C\sin B) $  Divide by  $ \sin A\sin B\sin C $           
    

$ \therefore ,\cot A-\cot B=\cot B-\cot C $ . Hence the result.