Trigonometric Equations Question 67

Question: The solution of equation $ {{\cos }^{2}}\theta +\sin \theta +1=0 $ lies in the interval

[UPSEAT 2004; IIT 1992]

Options:

A) $ ( -\frac{\pi }{4},\frac{\pi }{4} ) $

B) $ ( \frac{\pi }{4},\frac{3\pi }{4} ) $

C) $ ( \frac{3\pi }{4},\frac{5\pi }{4} ) $

D) $ ( \frac{5\pi }{4},\frac{7\pi }{4} ) $

Show Answer

Answer:

Correct Answer: D

Solution:

  • We have, $ {{\cos }^{2}}\theta +\sin \theta +1=0 $
    Þ $ 1-{{\sin }^{2}}\theta +\sin \theta +1=0 $
    Þ $ {{\sin }^{2}}\theta -\sin \theta -2=0 $
    Þ $ (\sin \theta +1),(\sin \theta -2)=0 $ $ \sin \theta =2 $ , which is not possible and $ \sin \theta =-1 $ . Therefore, solution of given equation lies in the interval $ ( \frac{5\pi }{4},,\frac{7\pi }{4} ) $ .