Trigonometric Equations Question 71

Question: The most general value of $ \theta $ which will satisfy both the equations $ \sin \theta =-\frac{1}{2} $ and $ \tan \theta =\frac{1}{\sqrt{3}} $ is

[MNR 1980; MP PET 1989; DCE 1995]

Options:

A) $ n\pi +{{(-1)}^{n}}\frac{\pi }{6} $

B) $ n\pi +\frac{\pi }{6} $

C) $ 2n\pi \pm \frac{\pi }{6} $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

  • $ \sin \theta =-\frac{1}{2}=\sin ( -\frac{\pi }{6} )=\sin ( \pi +\frac{\pi }{6} ) $ $ \tan \theta =\frac{1}{\sqrt{3}}=\tan ( \frac{\pi }{6} )=\tan ( \pi +\frac{\pi }{6} )\Rightarrow \theta =( \pi +\frac{\pi }{6} ) $ Hence general value of $ \theta $ is $ 2n\pi +\frac{7\pi }{6} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें