Trigonometric Equations Question 72

Question: Common roots of the equations $ 2{{\sin }^{2}}x+{{\sin }^{2}}2x=2 $ and $ \sin 2x+\cos 2x=\tan x, $ are

Options:

A) $ x=(2n-1)\frac{\pi }{2} $

B) $ x=(2n+1)\frac{\pi }{4} $

C) $ x=(2n+1)\frac{\pi }{3} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ 2{{\sin }^{2}}x+{{\sin }^{2}}2x=2 $ ……(i) and $ \sin 2x+\cos 2x=\tan x $ …..(ii) Solving (i), $ {{\sin }^{2}}2x=2{{\cos }^{2}}x $
    Þ $ 2{{\cos }^{2}}x\cos 2x=0 $ Þ $ x=(2n+1)\frac{\pi }{2}\text{ or }x=(2n+1)\frac{\pi }{4} $
    $ \therefore $ Common roots are $ (2n\pm 1)\frac{\pi }{4} $ Solving (ii), $ \frac{2\tan x+1-{{\tan }^{2}}x}{1+{{\tan }^{2}}x}=\tan x $
    $ \Rightarrow $ $ {{\tan }^{3}}x+{{\tan }^{2}}x-\tan x-1=0 $
    $ \Rightarrow $ $ ({{\tan }^{2}}x-1),(\tan x+1)=0 $
    $ \Rightarrow $ $ x=m\pi \pm \frac{\pi }{4} $ Trick: For $ n=0 $ , option gives $ \theta =-\frac{\pi }{2} $ which satisfies the equation (i) but does not satisfy the (ii). Now option gives $ \theta =\frac{\pi }{4} $ which satisfies both the equations.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें