Trigonometric Equations Question 78

Question: The smallest positive angle which satisfies the equation $ 2{{\sin }^{2}}\theta +\sqrt{3}\cos \theta +1=0 $ , is

[ISM Dhanbad 1972; MP PET 1993]

Options:

A) $ \frac{5\pi }{6} $

B) $ \frac{2\pi }{3} $

C) $ \frac{\pi }{3} $

D) $ \frac{\pi }{6} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ 2-2{{\cos }^{2}}\theta +\sqrt{3}\cos \theta +1=0 $
    $ \Rightarrow $ $ 2{{\cos }^{2}}\theta -\sqrt{3}\cos \theta -3=0 $
    $ \Rightarrow $ $ \cos \theta =\frac{\sqrt{3}\pm \sqrt{3+24}}{4}=\frac{\sqrt{3}(1\pm 3)}{4}=\sqrt{3}( -\frac{1}{2} ) $
    $ \Rightarrow $ $ \theta =\frac{5\pi }{6} $ .