Trigonometric Equations Question 80

Question: $ \cot \theta =\sin 2\theta (\theta \ne n\pi $ , n is integer), if $ \theta = $

[BIT Ranchi 1991; Pb. CET 1991]

Options:

A) $ 45^{o} $ and $ 60^{o} $

B) $ 45^{o} $ and $ 90^{o} $

C) $ 45^{o} $ only

D) $ 90^{o} $ only

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ \cot \theta =\sin 2\theta ,\text{  }(\theta \ne n\pi )\Rightarrow 2{{\sin }^{2}}\theta \cos \theta =\cos \theta  $   
    

$ \Rightarrow $ $ \cos \theta =0 $ or $ {{\sin }^{2}}\theta =\frac{1}{2}={{\sin }^{2}}( \frac{\pi }{4} ) $
$ \Rightarrow $ $ \theta =(2n+1)\frac{\pi }{2} $ or $ \theta =n\pi \pm \frac{\pi }{4} $
$ \Rightarrow $ $ \theta =90^{o} $ and $ 45^{o} $ .