Trigonometric Equations Question 86

Question: If $ \tan (\pi \cos \theta )=\cot (\pi \sin \theta ), $ then the value of $ \cos ( \theta -\frac{\pi }{4} ) $ =

[UPSEAT 1999]

Options:

A) $ \frac{1}{2\sqrt{2}} $

B) $ \frac{1}{\sqrt{2}} $

C) $ \frac{1}{3\sqrt{2}} $

D) $ \frac{1}{4\sqrt{2}} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ \tan (\pi \cos \theta )=\tan ( \frac{\pi }{2}-\pi \sin \theta ) $
    $ \therefore $ $ ,\sin \theta +\cos \theta =\frac{1}{2} $
    $ \Rightarrow ,\cos ( \theta -\frac{\pi }{4} )=\frac{1}{2\sqrt{2}} $ .