Trigonometric Equations Question 89

Question: The value of $ \theta $ lying between 0 and $ \pi /2 $ and satisfying the equation $ | ,\begin{matrix} 1+{{\sin }^{2}}\theta & {{\cos }^{2}}\theta & 4\sin 4\theta \\ {{\sin }^{2}}\theta & 1+{{\cos }^{2}}\theta & 4\sin 4\theta \\ {{\sin }^{2}}\theta & {{\cos }^{2}}\theta & 1+4\sin 4\theta \\ \end{matrix}, |=0 $

[IIT 1988; MNR 1992; Kurukshetra CEE 1998; DCE 1996]

Options:

A) $ \frac{7\pi }{24} $ or $ \frac{11\pi }{24} $

B) $ \frac{5\pi }{24} $

C) $ \frac{\pi }{24} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • The given determinant (Applying $ R_1\to R_1-R_3 $ and $ R_2\to R_2-R_3 $ ) reduces to $ | ,\begin{matrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ {{\sin }^{2}}\theta & {{\cos }^{2}}\theta & 1+4\sin 4\theta \\ \end{matrix}, |,=0 $
    $ \Rightarrow $ $ 1+4\sin 4\theta +{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =0 $ (By expanding along $ R_1) $
    Þ $ 4\sin 4\theta =-2 $
    Þ $ \sin 4\theta =\frac{-1}{2} $
    Þ $ 4\theta =\frac{7\pi }{6} $ or $ \frac{11\pi }{6} $ , ( $ 0<4\theta <2\pi $ ) Since, $ 0<\theta <\frac{\pi }{2} $
    Þ $ 0<4\theta <2\pi $
    Þ $ \theta =\frac{7\pi }{24},\frac{11\pi }{24} $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें