Trigonometric Equations Question 89
Question: The value of $ \theta $ lying between 0 and $ \pi /2 $ and satisfying the equation $ | ,\begin{matrix} 1+{{\sin }^{2}}\theta & {{\cos }^{2}}\theta & 4\sin 4\theta \\ {{\sin }^{2}}\theta & 1+{{\cos }^{2}}\theta & 4\sin 4\theta \\ {{\sin }^{2}}\theta & {{\cos }^{2}}\theta & 1+4\sin 4\theta \\ \end{matrix}, |=0 $
[IIT 1988; MNR 1992; Kurukshetra CEE 1998; DCE 1996]
Options:
A) $ \frac{7\pi }{24} $ or $ \frac{11\pi }{24} $
B) $ \frac{5\pi }{24} $
C) $ \frac{\pi }{24} $
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
- The given determinant (Applying  $ R_1\to R_1-R_3 $  and  $ R_2\to R_2-R_3 $ )  reduces to  $ | ,\begin{matrix}    1 & 0 & -1  \\    0 & 1 & -1  \\    {{\sin }^{2}}\theta  & {{\cos }^{2}}\theta  & 1+4\sin 4\theta   \\ \end{matrix}, |,=0 $
 $ \Rightarrow $ $ 1+4\sin 4\theta +{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =0 $ (By expanding along $ R_1) $
 Þ $ 4\sin 4\theta =-2 $
 Þ $ \sin 4\theta =\frac{-1}{2} $
 Þ $ 4\theta =\frac{7\pi }{6} $ or $ \frac{11\pi }{6} $ , ( $ 0<4\theta <2\pi $ ) Since, $ 0<\theta <\frac{\pi }{2} $
 Þ $ 0<4\theta <2\pi $
 Þ $ \theta =\frac{7\pi }{24},\frac{11\pi }{24} $
 BETA
  BETA 
             
             
           
           
           
          