Trigonometric Equations Question 90

Question: In a $ \Delta ABC $ , $ a,\ b,\ A $ are given and $ c_1,\ c_2 $ are two values of the third side c. The sum of the areas of two triangles with sides $ a,\ b,\ c_1 $ and $ a,b,\ c_2 $ is

Options:

A) $ \frac{1}{2}b^{2}\sin 2A $

B) $ \frac{1}{2}a^{2}\sin 2A $

C) $ b^{2}\sin 2A $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • We have $ \cos A=\frac{c^{2}+b^{2}-a^{2}}{2bc} $
    $ \Rightarrow c^{2}-2bc,\cos A+(b^{2}-a^{2})=0 $ It is given that $ c_1 $ and $ c_2 $ are roots of this equation. Therefore $ c_1+c_2=2b\cos A $ and $ c_1c_2=b^{2}-a^{2} $
    $ \Rightarrow $ $ k,(\sin C_1+\sin C_2)=2k\sin B\cos A $
    $ \Rightarrow $ $ \sin C_1+\sin C_2=2\sin B\cos A $
    $ \Rightarrow $ Now sum of the areas of two triangles = $ \frac{1}{2}ab\sin C_1+\frac{1}{2}ab\sin C_2 $ = $ \frac{1}{2}ab(\sin C_1+\sin C_2) $ $ =\frac{1}{2}ab(2\sin B\cos A)=ab\sin B\cos A $ = $ b(a\sin B)\cos A=b(b\sin A)\cos A=\frac{1}{2}b^{2}\sin 2A $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें