Trigonometric Equations Question 93

Question: If cot $ (\alpha +\beta )=0, $ then $ \sin (\alpha +2\beta )= $

[Kerala (Engg.) 2001]

Options:

A) $ \sin \alpha $

B) $ \cos \alpha $

C) $ \sin \beta $

D) $ \cos 2\beta $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Given, cot $ (\alpha +\beta )=0\Rightarrow \cos (\alpha +\beta )=0 $
    Þ $ \alpha +\beta =(2n+1)\frac{\pi }{2},n\in I $ \ $ \sin (\alpha +2\beta )=\sin (2\alpha +2\beta -\alpha ) $ = $ \sin [(2n+1)\pi -\alpha ] $ $ =\sin (,2n\pi +\pi -\alpha ,) $ = $ \sin (,\pi -\alpha ,),=\sin \alpha $ .