Trigonometric Equations Question 98

Question: In a $ \Delta ABC $ , $ \frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c} $ and the side $ a=2, $ then area of the triangle is

[IIT Screening 1993; MP PET 2000]

Options:

A) 1

B) 2

C) $ \frac{\sqrt{3}}{2} $

D) $ \sqrt{3} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • $ \frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c}\Rightarrow \frac{\cos A}{k\sin A}=\frac{\cos B}{k\sin B}=\frac{\cos C}{k\sin C} $
    Þ $ \cot A=\cot B=\cot C\Rightarrow A=B=C=60^{o} $
    Þ $ \Delta ABC $ is equilateral. \ $ \Delta =\frac{\sqrt{3}}{4}a^{2}=\sqrt{3} $ .