Trigonometric Equations Question 99

Question: In a $ \Delta ABC, $ if $ (\sin A+\sin B+\sin C) $ $ (\sin A+\sin B-\sin C) $ = $ 3\sin A\sin B, $ then the angle C is equal to

[AMU 1999]

Options:

A) $ \frac{\pi }{2} $

B) $ \frac{\pi }{3} $

C) $ \frac{\pi }{4} $

D) $ \frac{\pi }{6} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ (a+b+c)(a+b-c)=3ab $
    Þ $ \frac{a^{2}+b^{2}-c^{2}}{2ab}=\frac{1}{2}\Rightarrow \cos C=\cos \frac{\pi }{3}\Rightarrow \angle C=\pi /3 $