Trigonometric Identities Question 106

Question: If for real values of $ x,\cos \theta =x+\frac{1}{x}, $ then

[MP PET 1996]

Options:

A) $ \theta $ is an acute angle

B) $ \theta $ is a right angle

C) $ \theta $ is an obtuse angle

D) No value of $ \theta $ is possible

Show Answer

Answer:

Correct Answer: D

Solution:

The quadratic equation is $ x^{2}-x\cos \theta +1=0 $ But x is real, therefore $ B^{2}-4AC\ge 0 $
$ \Rightarrow {{\cos }^{2}}\theta \ge 4(1)(1)\Rightarrow {{\cos }^{2}}\theta \ge 4 $ , which is impossible.