Trigonometric Identities Question 109

Question: The equation $ {{(a+b)}^{2}}=4ab{{\sin }^{2}}\theta $ is possible only when

Options:

A) $ 2a=b $

B) $ a=b $

C) $ a=2b $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

We have $ {{(a+b)}^{2}}=4ab{{\sin }^{2}}\theta $
$ \Rightarrow {{\sin }^{2}}\theta =\frac{{{(a+b)}^{2}}}{4ab}\le 1\Rightarrow {{(a+b)}^{2}}-4ab\le 0 $
$ \Rightarrow {{(a-b)}^{2}}\le 0\Rightarrow a=b. $