Trigonometric Identities Question 113

Question: If $ \tan A=\frac{1-\cos B}{\sin B}, $ find $ \tan 2A $ in terms of $ \tan B $ and show that

[IIT 1983; MP PET 1994]

Options:

A) $ \tan 2A=\tan B $

B) $ \tan 2A={{\tan }^{2}}B $

C) $ \tan 2A={{\tan }^{2}}B+2\tan B $

D) None of the above

Show Answer

Answer:

Correct Answer: A

Solution:

$ \tan A=\frac{1-\cos B}{\sin B}=\frac{2{{\sin }^{2}}(B/2)}{2\sin (B/2)\cos (B/2)}=\tan \frac{B}{2} $
Þ $ \tan 2A=\tan B $ .