Trigonometric Identities Question 115

Question: The expression $ \frac{\cos 6x+6\cos 4x+15\cos 2x+10}{\cos 5x+5\cos 3+10\cos x} $ is equal to

Options:

A) $ cos2x $

B) $ 2,cos,x $

C) $ cos^{2}x $

D) $ 1+\cos x $

Show Answer

Answer:

Correct Answer: B

Solution:

The given expression can be written as $ \frac{(\cos 6x+\cos 4x)+5(\cos 4x+\cos 2x)+10(\cos 2x+1)}{\cos 5x+5\cos 3x+10\cos x} $ $ =\frac{2\cos 5x\cos x+5.2\cos 3x,cos,x+10.2{{\cos }^{2}}x}{\cos 5x+5cos3x+10cosx} $ $ =\frac{2\cos x(\cos 5x+5\cos 3x+10\cos x)}{\cos 5x+5\cos 3x+10\cos x}=2\cos x $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें