Trigonometric Identities Question 123

Question: If $ \sin \theta =\frac{24}{25} $ and $ \theta $ lies in the second quadrant, then $ \sec \theta +\tan \theta = $

[MP PET 1997]

Options:

A) - 3

B) - 5

C) - 7

D) - 9

Show Answer

Answer:

Correct Answer: C

Solution:

$ \sin \theta =\frac{24}{25}\Rightarrow \cos \theta =\frac{-7}{25},,\tan \theta =\frac{-24}{7} $ $ \cos A\cos B=\frac{1}{5} $ $ \sec \theta +\tan \theta =\frac{-25}{7}+\frac{-24}{7}=-7 $