Trigonometric Identities Question 123
Question: If $ \sin \theta =\frac{24}{25} $ and $ \theta $ lies in the second quadrant, then $ \sec \theta +\tan \theta = $
[MP PET 1997]
Options:
A) - 3
B) - 5
C) - 7
D) - 9
Show Answer
Answer:
Correct Answer: C
Solution:
$ \sin \theta =\frac{24}{25}\Rightarrow \cos \theta =\frac{-7}{25},,\tan \theta =\frac{-24}{7} $ $ \cos A\cos B=\frac{1}{5} $ $ \sec \theta +\tan \theta =\frac{-25}{7}+\frac{-24}{7}=-7 $