Trigonometric Identities Question 124

Question: If $ \sin \beta $ is the geometric mean between $ \sin \alpha $ and $ \cos \alpha , $ then $ \cos 2\beta $ is equal to

Options:

A) $ 2{{\sin }^{2}}( \frac{\pi }{4}-\alpha ) $

B) $ 2{{\cos }^{2}}( \frac{\pi }{4}-\alpha ) $

C) $ 2{{\cos }^{2}}( \frac{\pi }{4}+\alpha ) $

D) $ 2{{\sin }^{2}}( \frac{\pi }{4}+\alpha ) $

Show Answer

Answer:

Correct Answer: C

Solution:

Since $ \sin \beta $ is G.M. between $ \sin \alpha $ and $ \cos \alpha $ .
$ \therefore {{\sin }^{2}}\beta =\sin \alpha \cos \alpha $ Now $ \cos 2\beta =1-2{{\sin }^{2}}\beta =1-2\sin \alpha \cos \alpha $ $ ={{(\cos \alpha -\sin \alpha )}^{2}}=2,{{( \frac{1}{\sqrt{2}}\cos \alpha -\frac{1}{\sqrt{2}}\sin \alpha )}^{2}} $ $ =2{{\sin }^{2}}( \frac{\pi }{4}-\alpha ) $ , which is given in (a). Also $ \cos 2\beta =2{{\cos }^{2}}{ \frac{\pi }{2}-( \frac{\pi }{4}-\alpha ) }=2{{\cos }^{2}}( \frac{\pi }{4}+\alpha ) $ , which is given in (c).