Trigonometric Identities Question 13

Question: $ \frac{\sin \theta +\sin 2\theta }{1+\cos \theta +\cos 2\theta }= $

[Roorkee 1971]

Options:

A) $ \frac{1}{2}\tan \theta $

B) $ \frac{1}{2}\cot \theta $

C) $ \tan \theta $

D) $ \cot \theta $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{\sin \theta +\sin 2\theta }{1+\cos \theta +\cos 2\theta } $ $ =\frac{\sin \theta +2\sin \theta \cos \theta }{2{{\cos }^{2}}\theta +\cos \theta }=\frac{\sin \theta (1+2\cos \theta )}{\cos \theta (1+2\cos \theta )}=\tan \theta $ . Trick: Put $ \theta =30{}^\circ $ , since for $ \theta =30{}^\circ $ no option will give the common value.