Trigonometric Identities Question 130

Question: If $ \sin A=n\sin B, $ then $ \frac{n-1}{n+1}\tan ,\frac{A+B}{2}= $

Options:

A) $ \sin \frac{A-B}{2} $

B) $ \tan \frac{A-B}{2} $

C) $ \cot \frac{A-B}{2} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

We have $ \sin A=n\sin B\Rightarrow \frac{n}{1}=\frac{\sin A}{\sin B} $
$ \Rightarrow \frac{n-1}{n+1}=\frac{\sin A-\sin B}{\sin A+\sin B}=\frac{2\cos \frac{A+B}{2}\sin \frac{A-B}{2}}{2\sin \frac{A+B}{2}\cos \frac{A-B}{2}} $ $ =\tan \frac{A-B}{2}\cot \frac{A+B}{2} $
$ \Rightarrow \frac{n-1}{n+1}\tan ( \frac{A+B}{2} )=\tan \frac{A-B}{2} $ .