Trigonometric Identities Question 136

Question: If $ \sin (\alpha -\beta )=\frac{1}{2} $ and $ \cos (\alpha +\beta )=\frac{1}{2}, $ where $ \alpha $ and $ \beta $ are positive acute angles, then

Options:

A) $ \alpha =45{}^\circ ,\beta =15{}^\circ $

B) $ \alpha =15{}^\circ ,\beta =45{}^\circ $

C) $ \alpha =60{}^\circ ,\beta =15{}^\circ $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \sin (\alpha -\beta )=\frac{1}{2}=\sin 30{}^\circ \Rightarrow \alpha -\beta =30{}^\circ $ ?..(i) and $ \cos (\alpha +\beta )=\frac{1}{2}\Rightarrow \alpha +\beta =60{}^\circ $ ?..(ii) Solving (i) and (ii), we get $ \alpha =45{}^\circ $ and $ \beta =15{}^\circ $ . Trick: In such type of problems, students should satisfy the given conditions with the values given in the options. Here $ \alpha =45{}^\circ $ and $ \beta =15{}^\circ $ satisfy both the conditions.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें