Trigonometric Identities Question 139

Question: The difference of two angles is $ 1{}^\circ ; $ the circular measure of their sum is 1. What is the smaller angle in circular measure?

Options:

A) $ [ \frac{180}{\pi }-1 ] $

B) $ [ 1-\frac{\pi }{180} ] $

C) $ \frac{1}{2}[ 1-\frac{\pi }{180} ] $

D) $ \frac{1}{2}[ \frac{180}{\pi }-1 ] $

Show Answer

Answer:

Correct Answer: C

Solution:

Let the angles are $ \alpha $ and $ \beta , $ then $ \alpha -\beta =1{}^\circ $
$ \Rightarrow \alpha -\beta =\frac{\pi }{180{}^\circ } $ is circular measure .. .(i) As given, $ \alpha +\beta =1 $ …(ii) On solving Eqs. (i) and (ii), we get, $ \alpha =\frac{1}{2}[ 1+\frac{\pi }{180{}^\circ } ] $ and $ \beta =\frac{1}{2}[ 1-\frac{\pi }{180{}^\circ } ] $ $ \beta $ is the smaller angle. Hence, smaller angle $ =\frac{1}{2}[ 1-\frac{\pi }{180{}^\circ } ] $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें