Trigonometric Identities Question 140

If $ \sin 18^{\circ}=\frac{\sqrt{5}-1}{4}, $ then what is the value of $ \sin 18^{\circ} $ ?

Options:

A) $ \frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4} $

B) $ \frac{\sqrt{3+\sqrt{5}}+\sqrt{5+\sqrt{5}}}{4} $

C) $ \frac{\sqrt{3-\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4} $

D) $ \frac{\sqrt{3+\sqrt{5}}-\sqrt{5-\sqrt{5}}}{4} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \because \sin 18{}^\circ =\frac{\sqrt{5}-1}{4} $ $ x^{2}=4^{2}-{{( \sqrt{5}-1 )}^{2}} $
$ \Rightarrow x=\sqrt{10+2\sqrt{5}} $
$ \Rightarrow \cos 18{}^\circ =\frac{\sqrt{10+2\sqrt{5}}}{4} $
$ \Rightarrow ,2,{{\cos }^{2}}9-1=\frac{\sqrt{10+2\sqrt{5}}}{4} $ $ {{\cos }^{2}}9=\frac{\sqrt{10+2\sqrt{5}}+4}{8} $
$ \Rightarrow ,{{\sin }^{2}}81=\frac{4+\sqrt{10+2\sqrt{5}}}{8} $ After squaring all the options available, we come to a conclusion that the option is correct.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें