Trigonometric Identities Question 141

Question: If $ A $ lies in the second quadrant and $ 3\tan A+4=0, $ the value of $ 2\cot A-5\cos A+\sin A $ is equal to

[Pb. CET 2000]

Options:

A) $ \frac{-53}{10} $

B) $ \frac{-7}{10} $

C) $ \frac{7}{10} $

D) $ \frac{23}{10} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ 3,\tan A+4=0,\Rightarrow ,\tan A=-\frac{4}{3} $
$ \Rightarrow \sin A,=\pm ,\frac{\tan A}{\sqrt{1+{{\tan }^{2}}A}}=\pm \frac{-4/3}{\sqrt{1+16/9}}=\frac{4}{5} $ $ (\because A $ is in 2nd quadrant) and $ \cos ,A=-\frac{3}{5} $ . Thus, $ 2\cot A-5\cos A+\sin A $ $ =2,( -\frac{3}{4} )-5,( -\frac{3}{5} )+\frac{4}{5}=\frac{23}{10} $ .