Trigonometric Identities Question 145

Question: If $ x+\frac{1}{x}=2,\cos \theta , $ then $ x^{3}+\frac{1}{x^{3}}= $

[MP PET 2004]

Options:

A) $ \cos 3\theta $

B) $ 2,\cos ,3\theta $

C) $ \frac{1}{2}\cos ,3\theta $

D) $ \frac{1}{3}\cos ,3\theta $

Show Answer

Answer:

Correct Answer: B

Solution:

We have $ x+\frac{1}{x}=2\cos \theta $ , Now $ x^{3}+\frac{1}{x^{3}}={{( x+\frac{1}{x} )}^{3}}-3x\frac{1}{x}( x+\frac{1}{x} ) $ = $ {{(2\cos \theta )}^{3}}-3(2\cos \theta )=8{{\cos }^{3}}\theta -6\cos \theta $ = $ 2(4{{\cos }^{3}}\theta -3\cos \theta )=2\cos 3\theta $ . Trick: Put $ x=1 $
$ \Rightarrow $ $ \theta ={0^{{}^\circ }} $ . Then $ x^{3}+\frac{1}{x^{3}}=2=2\cos 3\theta $ .