Trigonometric Identities Question 147

Question: If $ \theta $ lies in the second quadrant, then the value of $ \sqrt{( \frac{1-\sin \theta }{1+\sin \theta } )}+\sqrt{( \frac{1+\sin \theta }{1-\sin \theta } )} $

Options:

A) $ 2\sec \theta $

B) $ -2\sec \theta $

C) $ 2cosec\theta $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \sqrt{( \frac{1-\sin \theta }{1+\sin \theta } )}+\sqrt{( \frac{1+\sin \theta }{1-\sin \theta } )} $ is the sum of two positive quantities and hence the result must be positive. But for $ \frac{\pi }{2}<\theta <\pi , $ we have the sum equal to $ \frac{1-\sin \theta +1+\sin \theta }{\sqrt{1-{{\sin }^{2}}\theta }}=\frac{2}{\cos \theta }; $ which is negative. ( $ \because $ $ \cos \theta $ is negative for $ \theta $ lying in 2nd quadrant). So the required positive value $ =\frac{-2}{\cos \theta }=-2,\sec \theta ,,( \frac{\pi }{2}<\theta <\pi ) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें