Trigonometric Identities Question 151

Question: If $ \sec \theta +\tan \theta =p, $ then $ \tan \theta $ is equal to

[MP PET 1994]

Options:

A) $ \frac{2p}{p^{2}-1} $

B) $ \frac{p^{2}-1}{2p} $

C) $ \frac{p^{2}+1}{2p} $

D) $ \frac{2p}{p^{2}+1} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \sec \theta +\tan \theta =p\Rightarrow ,\sec ,\theta -\tan \theta =\frac{1}{p} $ Subtracting second from first, we get $ 2\tan \theta =p-\frac{1}{p} $
$ \Rightarrow ,\tan \theta =\frac{p^{2}-1}{2p} $ .