Trigonometric Identities Question 151
Question: If $ \sec \theta +\tan \theta =p, $ then $ \tan \theta $ is equal to
[MP PET 1994]
Options:
A) $ \frac{2p}{p^{2}-1} $
B) $ \frac{p^{2}-1}{2p} $
C) $ \frac{p^{2}+1}{2p} $
D) $ \frac{2p}{p^{2}+1} $
Show Answer
Answer:
Correct Answer: B
Solution:
$ \sec \theta +\tan \theta =p\Rightarrow ,\sec ,\theta -\tan \theta =\frac{1}{p} $ Subtracting second from first, we get $ 2\tan \theta =p-\frac{1}{p} $
$ \Rightarrow ,\tan \theta =\frac{p^{2}-1}{2p} $ .