Trigonometric Identities Question 154

Question: If $ x+\frac{1}{x}=2\cos \alpha $ , then $ x^{n}+\frac{1}{x^{n}}= $

[Karnataka CET 2004]

Options:

A) $ 2^{n}\cos \alpha $

B) $ 2^{n}\cos n\alpha $

C) $ 2i,\sin ,n,\alpha $

D) $ 2\cos ,n\alpha $

Show Answer

Answer:

Correct Answer: D

Solution:

We have, $ x+\frac{1}{x}=2\cos \alpha $ $ x^{2}+\frac{1}{x^{2}}+2=4{{\cos }^{2}}\alpha $ . $ $ $ x^{2}+\frac{1}{x^{2}}=4{{\cos }^{2}}\alpha -2 $ , $ x^{2}+\frac{1}{x^{2}}=2(2{{\cos }^{2}}\alpha -1)=2\cos 2\alpha $ Similarly $ x^{n}+\frac{1}{x^{n}}=2\cos ,n\alpha $ .