Trigonometric Identities Question 161

Question: $ \frac{1+\sin A-\cos A}{1+\sin A+\cos A} $ =

Options:

A) $ \sin \frac{A}{2} $

B) $ \cos \frac{A}{2} $

C) $ \tan \frac{A}{2} $

D) $ \cot \frac{A}{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{1+\sin A-\cos A}{1+\sin A+\cos A} $ $ =\frac{2,{{\sin }^{2}}\frac{A}{2}+2,\sin \frac{A}{2}\cos \frac{A}{2}}{2,{{\cos }^{2}}\frac{A}{2}+2,\sin \frac{A}{2}\cos \frac{A}{2}} $ $ =\frac{2\sin \frac{A}{2},( \sin \frac{A}{2}+\cos \frac{A}{2} )}{2\cos \frac{A}{2},( \cos \frac{A}{2}+\sin \frac{A}{2} )} $ = $ \tan \frac{A}{2} $ . Trick: Put $ A=60^{o}. $ Then $ \frac{1+(\sqrt{3}/2)-(1/2)}{1+(\sqrt{3}/2)+(1/2)}=\frac{1+\sqrt{3}}{3+\sqrt{3}}=\frac{1}{\sqrt{3}} $ which is given by option , i.e. $ \tan \frac{60^{o}}{2}=\frac{1}{\sqrt{3}} $ Note: Students should remember at the time of assuming the values of A, B, q, ….. etc. that, for the assumed values, the options must have different values.



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index