Trigonometric Identities Question 172

Question: If $ \tan \theta +\sin \theta =m $ and $ \tan \theta -\sin \theta =n, $ then

[IIT 1970]

Options:

A) $ m^{2}-n^{2}=4mn $

B) $ m^{2}+n^{2}=4mn $

C) $ m^{2}-n^{2}=m^{2}+n^{2} $

D) $ m^{2}-n^{2}=4\sqrt{mn} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ (m+n)=2,\tan \theta ,m-n=2,\sin \theta $
$ \therefore ,m^{2}-n^{2}=4,\tan \theta ,.,\sin \theta $ ?..(i) $ 4\sqrt{mn}=4\sqrt{{{\tan }^{2}}\theta -{{\sin }^{2}}\theta }=4,\sin \theta ,.,\tan \theta $ ?..(ii) From (i) and (ii), $ m^{2}-n^{2}=4\sqrt{mn} $ .