Trigonometric Identities Question 176

Question: The value of $ \frac{\sin 8x+7\sin 6x+18\sin 4x+12\sin 2x}{\sin 7x+6\sin 5x+12\sin 3x} $ equal to?

Options:

A) $ 2\cos x $

B) $ \cos x $

C) $ 2sinx $

D) $ sinx $

Show Answer

Answer:

Correct Answer: A

Solution:

Numerator of given expression $ =(\sin 8x+\sin 6x)+6(\sin 6x+\sin 4x) $ $ +12(\sin 4x+\sin 2x) $ $ =2\sin 7x\cos x+12\sin 5x\cos x+24\sin 3x\cos x $ $ =2\cos x(\sin 7x+6\sin 5x+12\sin 3x) $ Hence, given expression $ =\frac{2\cos x(\sin 7x+6\sin 5x+12sin3x)}{(\sin 7x+6\sin 5x+12\sin 3x)}=2\cos x $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें