Trigonometric Identities Question 191

Question: If $ \sin (y+z-x) $ , $ \sin (z+x-y) $ , $ \sin (x+y-z) $ are in A.P., then $ \tan x,\tan y,\tan z $ are in

Options:

A) A.P.

B) G.P.

C) H.P.

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Applying b-a=c-b for A.P., we get $ 2\cos z\sin (x-y)=2cosxsin(y-z) $ Dividing by 2 $ \cos x\cos y\cos z, $ etc., we get $ tanx-tany=tany-tanz $