Trigonometric Identities Question 196

Question: $ \sqrt{3},cosec,20^{o}-\sec ,20^{o}= $

[IIT 1988]

Options:

A) 2

B) $ \frac{2,\sin 20^{o}}{\sin 40^{o}} $

C) 4

D) $ \frac{4,\sin 20^{o}}{\sin 40^{o}} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \sqrt{3}cosec,20{}^\circ -\sec 20{}^\circ =\frac{\sqrt{3}}{\sin 20{}^\circ }-\frac{1}{\cos ,20{}^\circ } $ $ =\frac{\sqrt{3}\cos 20{}^\circ -\sin 20{}^\circ }{\sin 20{}^\circ \cos 20{}^\circ }=\frac{2[ \frac{\sqrt{3}}{2}\cos 20{}^\circ -\frac{1}{2}\sin ,20{}^\circ ]}{\frac{2}{2}\sin 20{}^\circ \cos 20{}^\circ } $ $ =\frac{4\cos (20{}^\circ +30{}^\circ )}{\sin 40{}^\circ }=\frac{4\cos 50{}^\circ }{\sin 40{}^\circ }=\frac{4\sin 40{}^\circ }{\sin 40{}^\circ }=4 $ .