Trigonometric Identities Question 200

Question: $ \sin 20^{o}\sin 40^{o}\sin 60^{o}\sin 80^{o}= $

[MNR 1976, 81]

Options:

A) $ -3/16 $

B) $ 5/16 $

C) $ 3/16 $

D) $ -5/16 $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \sin 20{}^\circ \sin 40^{o}\sin 60{}^\circ \sin 80{}^\circ $

$ =\frac{1}{2}\sin 20{}^\circ \sin 60{}^\circ (2\sin 40^{o}\sin 80{}^\circ ) $ $ =\frac{1}{2}\sin 20{}^\circ \sin 60{}^\circ (\cos 40{}^\circ -\cos 120{}^\circ ) $

$ =\frac{1}{2}.\frac{\sqrt{3}}{2}\sin 20{}^\circ ( 1-2{{\sin }^{2}}20{}^\circ +\frac{1}{2} ) $

$ =\frac{\sqrt{3}}{4}\sin 20{}^\circ ( \frac{3}{2}-2{{\sin }^{2}}20{}^\circ ) $

$ =\frac{\sqrt{3}}{8}(3\sin 20{}^\circ -4{{\sin }^{3}}20{}^\circ ) $ $ =\frac{\sqrt{3}}{8}\sin 60{}^\circ =\frac{\sqrt{3}}{8}.\frac{\sqrt{3}}{2}=\frac{3}{16} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें