Trigonometric Identities Question 202

Question: If $ {{\sin }^{2}}\theta =\frac{x^{2}+y^{2}+1}{2x} $ , then x must be

[UPSEAT 2004]

Options:

A) - 3

B) - 2

C) 1

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

$ {{\sin }^{2}}\theta \le 1 $ \ $ \frac{x^{2}+y^{2}+1}{2x}\le 1 $ $ x^{2}+y^{2}-2x+1\le 0 $ . $ {{(x-1)}^{2}}+y^{2}\le 0 $ It is possible, iff $ x=1 $ and $ y=0 $ , i.e., It also depends on value of y. Hence, option (d) is correct.