Trigonometric Identities Question 204

Question: If $ {{\tan }^{2}}\theta =2{{\tan }^{2}}\phi +1 $ ,then $ \cos 2\theta +{{\sin }^{2}}\phi $ equals

Options:

A) -1

B) 0

C) 1

D) none of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ {{\tan }^{2}}\theta =2{{\tan }^{2}}\phi +1 $ Or $ 1+{{\tan }^{2}}\theta =2(1+tan^{2}\phi ) $
$ \Rightarrow ,{{\sec }^{2}}\theta =2{{\sec }^{2}}\phi $
$ \Rightarrow ,{{\cos }^{2}}\phi =2{{\cos }^{2}}\theta $ $ =1+\cos 2\theta $
$ \Rightarrow \cos 2\theta ={{\cos }^{2}}\phi -1 $ $ =-{{\sin }^{2}}\phi $
$ \Rightarrow {{\sin }^{2}}\phi +\cos 2\theta =0 $