Trigonometric Identities Question 205

Question: If A and B are acute postitive angles satisfying the equations 3 $ {{\sin }^{2}}A+2{{\sin }^{2}}B=1 $ and 3 $ \sin 2A-2\sin 2B=0 $ then A+2B is equal to

Options:

A) $ \pi $

B) $ \frac{\pi }{2} $

C) $ \frac{\pi }{4} $

D) $ \frac{\pi }{6} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ 3{{\sin }^{2}}A+2{{\sin }^{2}}B=1 $ Or $ 3{{\sin }^{2}}A=\cos 2B $ Also $ 3\sin 2A-2\sin 2B=0 $ Or $ \sin 2B=\frac{3}{2}\sin 2A $ Now, $ \cos (A+2B)=cosAcos2B-sinAsin2B $ $ =\cos A3{{\sin }^{2}}A-sinA\frac{3}{2}\sin 2A $ $ =3{{\sin }^{2}}A\cos A=3{{\sin }^{2}}AcosA=0 $
$ \therefore ,A+2B=\frac{\pi }{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें