Trigonometric Identities Question 207

The most general value for which tan $ \theta $ =-1 and $ \cos \theta =\frac{1}{\sqrt{2}} $ is (n $ \in $ z)

Options:

A) $ n\pi =\frac{7\pi }{4} $

B) $ n\pi +{{(-1)}^{n}}\frac{7\pi }{4} $

C) $ 2n\pi {{+}^{}}\frac{7\pi }{4} $

D) none of these

Show Answer

Answer:

Correct Answer: C

Solution:

Since tan $ \theta $ = 0, $ \theta $ lies in the fourth quadrant, then $ \theta =7\pi /4 $ . Hence, the general value of $ \theta $ is $ 2n\pi +7\pi /4,n\in Z. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें