Trigonometric Identities Question 208

Question: The number of solutions of $ \sin x+\sin 2x+\sin 3x=\cos x+\cos 2x+\cos 3x, $ $ 0\le x\le 2\pi $ , is

Options:

A) 7

B) 5

C) 4

D) 6

Show Answer

Answer:

Correct Answer: D

Solution:

[d] we have $ (sinx+sin3x)+sin2x=(cosx+cos3x)+cos2x $ Or $ 2\sin 2x\cos x+\sin 2x=2\cos 2x\cos x+\cos 2x $ Or $ \sin 2x(2cosx+1)=cos2x(2cosx+1) $ Or $ (2cosx+1)(sin2x-\cos 2x)=0 $ Or $ \cos x=-1/2\sin 2x-\cos 2x=0 $
$ \Rightarrow x=2n\pi \pm (2\pi /3)or,tan2x=1=tan(\pi /4) $ $ =2n\pi \pm (2\pi /3)or,x=(4n+1)\pi /8,n\in Z $ But here $ 0\le x\le 2\pi . $ Hence, $ x=\pi /8,5\pi /8,2\pi /3,9\pi /8,4\pi /3,13\pi /8. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें