Trigonometric Identities Question 209

Question: The sum of all the solutions of $ \cot \theta =\sin 2\theta (\theta \ne n\pi ,n,integer) $ , $ 0\le \theta \le \pi $ is

Options:

A) $ 3\pi /2 $

B) $ \pi $

C) $ 3\pi /4 $

D) $ 2\pi $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] From the given relation $ \cos \theta =(2sin\theta cos\theta )sin\theta ,sin\theta \ne 0 $ Or $ \sin \theta =\pm \frac{1}{\sqrt{2}},or,\cos \theta =0 $ Or $ \theta =\frac{\pi }{4},\frac{3\pi }{4},\frac{\pi }{2} $ $ (\because \theta \in [0,\pi ]) $ Then the sum of roots is $ 3\pi /2 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें