Trigonometric Identities Question 213

Question: Three expressions are given below:

$ Q_1=\sin (A+B)+\sin (B+C)+\sin (C+A) $ $ Q_2=\cos (A-B)+\cos (B-C)+\cos (C-A) $ $ Q_3=\sin A(\cos B+\cos C)+\sin B(\cos C+\cos A)+ $ $ \sin C(\cos A+\cos B) $ Which one of the following is correct?

Options:

A) $ Q_1=Q_2 $

B) $ Q_2=Q_3 $

C) $ Q_1=Q_3 $

D) All the expressions are different

Show Answer

Answer:

Correct Answer: C

Solution:

We take $ Q_3 $ first, $ Q_3=\sin A(\cos B+\cos C)+\sin B(\cos C+\cos A) $ $ +\sin C(\cos A+\cos B) $ $ =\sin AcosB+sinAcosC+sinBcosC+sinBcosA $ $ +\sin C\cos A+\sin C\cos B $ $ =\sin (A+B)+\sin (B+C)+\sin (C+A)=Q_1 $
$ \Rightarrow Q_3=Q_1 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें