Trigonometric Identities Question 218

Question: If $ A=(\cos 12{}^\circ -\cos 36{}^\circ )(\sin 96{}^\circ +\sin 24{}^\circ ) $ and $ B=(\sin 60{}^\circ -\sin 12{}^\circ )(\cos 48{}^\circ -\cos 72{}^\circ ), $ then what is $ \frac{A}{B} $ equal to?

Options:

A) -1

B) $ 0 $

C) $ 1 $

D) $ 2 $

Show Answer

Answer:

Correct Answer: C

Solution:

Given $ A=(\cos 12{}^\circ -\cos 36{}^\circ )(\sin 96{}^\circ +sin24{}^\circ ) $ $ B=(\sin 60{}^\circ -\sin 12{}^\circ )(\cos 48{}^\circ -\cos 72{}^\circ ) $ $ \frac{A}{B}=\frac{[-2\sin 24{}^\circ \sin 12{}^\circ ][2\sin 60{}^\circ \cos 36{}^\circ ]}{[2\cos 36{}^\circ \sin 24{}^\circ ][-2\sin 60{}^\circ \sin 12{}^\circ ]} $
$ \Rightarrow \frac{A}{B}=1 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें