Trigonometric Identities Question 239

Question: On simplifying $ \frac{{{\sin }^{3}}A+\sin 3A}{\sin A}+\frac{{{\cos }^{3}}A-\cos 3A}{\cos A}, $ we get

Options:

A) $ \sin 3A $

B) $ \cos 3A $

C) $ \sin A+\cos A $

3

Show Answer

Answer:

Correct Answer: D

Solution:

$ \frac{{{\sin }^{3}}A+\sin 3A}{\sin A}+\frac{{{\cos }^{3}}A-\cos 3A}{\cos A} $ $ \Rightarrow \frac{{{\sin }^{3}}A+\sin A-4{{\sin }^{3}}A}{\sin A}+\frac{{{\cos }^{3}}A-[ 4{{\cos }^{3}}A-3\cos A ]}{\cos A} $
$ \Rightarrow \frac{3\sin A-3{{\sin }^{3}}A}{\sin A}+\frac{( -3{{\cos }^{3}}A+3\cos A )}{\cos A} $ $ =3-3{{\sin }^{2}}A-3{{\cos }^{2}}A+3 $ $ =6-3({{\cos }^{2}}A+{{\sin }^{2}}A) $ $ =6-3(1) $ $ =3 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें