Trigonometric Identities Question 244

Question: What is $ \frac{\cos 7x-\cos 3x}{\sin 7x-2\sin 5x+\sin 3x} $ equal to?

Options:

A) $ \tan x $

B) $ \cot x $

C) $ tan2x $

D) $ \cot 2x $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{\cos 7x-\cos 3x}{\sin 7x-2\sin 5x+\sin 3x} $ $ =\frac{-2\sin \frac{7x+3x}{2}.\sin \frac{7x-3x}{2}}{2\sin \frac{7x+3x}{2}.\cos \frac{7x-3x}{2}-2\sin 5x} $ $ =\frac{-2\sin 5x.\sin 2x}{2\sin 5x\cos 2x-2\sin 5x} $ $ =\frac{-2\sin 5x.\sin 2x}{-2\sin 5x[1-\cos 2x]} $ $ =\frac{\sin 2x}{1-1+2{{\sin }^{2}}x},(\because \cos 2x=1-2{{\sin }^{2}}x) $ $ =\frac{2\sin x\cos x}{2{{\sin }^{2}}x}=\cot x $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें