Trigonometric Identities Question 245

Question: Let $ x+y=3-\cos 4\theta $ and $ x-y=4sin2\theta $ then the greatest of $ xy $ is

Options:

A) $ \frac{3}{4} $

B) $ 1 $

C) $ \frac{1}{2} $

D) 2

Show Answer

Answer:

Correct Answer: B

Solution:

$ x=\frac{3-\cos 4\theta +4sin2\theta }{2} $ $ =\frac{3-(1-{{\sin }^{2}}2\theta )+4\sin 2\theta }{2}={{(1+\sin 2\theta )}^{2}} $ $ y=\frac{3-\cos 4\theta -4\sin 2\theta }{2} $ $ =\frac{3-(1-{{\sin }^{2}}2\theta )+4\sin 2\theta }{2}={{(1-\sin 2\theta )}^{2}} $
$ \therefore xy={{(1-{{\sin }^{2}}2\theta )}^{2}}=\cos {{,}^{4}}2\theta \le 1 $