Trigonometric Identities Question 246

Question: If A lies in the third quadrant and $ 3,\tan A-4=0, $ then $ 5,\sin 2A+3,\sin A+4,\cos A= $

[EAMCET 1994]

Options:

A) 0

B) $ \frac{-24}{5} $

C) $ \frac{24}{5} $

D) $ \frac{48}{5} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ 3\tan A-4=0\Rightarrow \tan A=\frac{4}{3}\Rightarrow \sin A=-\frac{4}{5},\cos A=-\frac{3}{5} $
$ \therefore $ $ 5\sin 2A+3\sin A+4\cos A $ = $ 10\sin A\cos A+3\sin A+4\cos A $ = $ 10,( \frac{12}{25} )-\frac{12}{5}-\frac{12}{5}=0 $ .