Trigonometric Identities Question 254

Question: The number of solution of $ \tan x+\sec x=2\cos x $ in $ (0,2\pi ) $ is

Options:

A) 2

B) 3

C) 0

D) 1

Show Answer

Answer:

Correct Answer: B

Solution:

The given equation is $ \tan x+\sec x=2\cos x; $
$ \Rightarrow \sin x+1=2{{\cos }^{2}}x\Rightarrow \sin x+1=2(1-{{\sin }^{2}}x); $
$ \Rightarrow ,2{{\sin }^{2}}x+\sin x-1=0; $
$ \Rightarrow ,(2\sin x-1)(sinx+1)=0\Rightarrow sin,x=\frac{1}{2},-1.; $
$ \Rightarrow x=30{}^\circ ,150{}^\circ ,270{}^\circ . $