Trigonometric Identities Question 268

Question: If $ \sin \alpha =\frac{-3}{5}, $ where $ \pi <\alpha <\frac{3\pi }{2}, $ then $ \cos \frac{1}{2}\alpha = $

[MP PET 1998]

Options:

A) $ \frac{-1}{\sqrt{10}} $

B) $ \frac{1}{\sqrt{10}} $

C) $ \frac{3}{\sqrt{10}} $

D) $ \frac{-3}{\sqrt{10}} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \cos (\alpha /2)=-\sqrt{\frac{1+\cos \alpha }{2}} $ $ \cos \alpha =-\sqrt{1-{{\sin }^{2}}\alpha } $ [ $ \because \alpha $ lies in IIIrd Quadrant] $ =-\sqrt{1-\frac{9}{25}}=-\frac{4}{5} $
$ \therefore ,\cos (\alpha /2)=-\sqrt{\frac{1-\frac{4}{5}}{2}}=-\frac{1}{\sqrt{10}} $ .